Identification of acylpeptide hydrolase as a sensitive site for reaction with organophosphorus compounds and a potential target for cognitive enhancing drugs.

نویسندگان

  • P G Richards
  • M K Johnson
  • D E Ray
چکیده

We describe here the purification and identification of a previously unrecognized target for organophosphorus compounds. The target, acylpeptide hydrolase, was isolated as a tritiated-diisopropylfluorophosphate-reactive protein from porcine brain and purified to homogeneity using a combination of ion-exchange and gel-filtration chromatography. Biochemical characterization and internal sequence analysis confirmed identity. Acylpeptide hydrolase was found to be potently inhibited by the organophosphorus compounds chlorpyrifosmethyl oxon, dichlorvos, and diisopropylfluorophosphate (20-min IC(50) values of 18.3 +/- 2.0, 118.7 +/- 9.7, and 22.5 +/- 1.2 nM, respectively). The in vitro sensitivity of acylpeptide hydrolase toward these compounds is between six and ten times greater than that of acetylcholinesterase (AChE), making it a target of pharmacological and toxicological significance. We show that, in vivo, acylpeptide hydrolase is significantly more sensitive than AChE to inhibition by dichlorvos and that the inhibition is more prolonged after a single dose of inhibitor. Furthermore, using dichlorvos as a progressive inhibitor, it was possible to show that acylpeptide hydrolase is the only enzyme in the brain capable of hydrolyzing the substrate N-acetyl-alanyl-p-nitroanilide. A concentration of 154 +/- 27 pmol of acylpeptide hydrolase/gram of fresh rat brain was also deduced by specific labeling with tritiated-diisopropylfluorophosphate. We also suggest that, by comparison of structure-activity relationships, acylpeptide hydrolase may be the target for the cognitive-enhancing effects of certain organophosphorus compounds. Acylpeptide hydrolase cleaves N(alpha)-acylated amino acids from small peptides and may be involved in regulation of neuropeptide turnover, which provides a new and plausible mechanism for its proposed cognitive enhancement effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulations of Acylpeptide Hydrolase Bound to Chlorpyrifosmethyl Oxon and Dichlorvos

Acylpeptide hydrolases (APHs) catalyze the removal of N-acylated amino acids from blocked peptides. Like other prolyloligopeptidase (POP) family members, APHs are believed to be important targets for drug design. To date, the binding pose of organophosphorus (OP) compounds of APH, as well as the different OP compounds binding and inducing conformational changes in two domains, namely, α/β hydro...

متن کامل

Design, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase

Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...

متن کامل

Noncholinesterase effects induced by organophosphate pesticides and their relationship to cognitive processes: implication for the action of acylpeptide hydrolase.

Organophosphate pesticides have been classically described as inhibitors of acetylcholinesterase (AChE) activity in insects and invertebrates. However, there is now more evidence supporting the hypothesis that these compounds also act through noncholinergic pathways, especially those related to cognitive processes. The enzyme acylpeptide hydrolase was identified as a new target for organophosph...

متن کامل

Design, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase

Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...

متن کامل

Organophosphate compounds and their biodegradation; using enzymes as an increased efficiency approach

Organophosphorus compounds are widely used in pesticides, insecticides in agriculture and as nervous chemical agents. These chemicals inhibit the acetylcholinesterase enzyme activity that is responsible for the nervous impulse in organisms. This effect leads to an increase in acetylcholine level and finally neuronal complications. Many methods are used to degrade and decontaminate these compou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 58 3  شماره 

صفحات  -

تاریخ انتشار 2000